
Chalky Documentation
Release 1.0.0

Stephen Bunn <stephen@bunn.io>

Jan 19, 2021





CONTENTS

1 Getting Started 3

2 Contributing 7

3 Changelog 11

4 License 15

5 Project Reference 17

Python Module Index 27

Index 29

i



ii



Chalky Documentation, Release 1.0.0

Yet another terminal text coloring library. . .

Why? Because, I like certain things and I hate certain things about the currently available solutions. This here is my
attempt to build an interface for simply applying ANSI escape sequences to strings that I enjoy and can update at my
own free will. That is it, there is nothing new or interesting that this packages adds. Thanks

1 from chalky import bg, fg, hex, rgb, sty
2

3 # compose some styles together
4 print(fg.red & sty.bold | "Bold and red text")
5 print(bg.blue & fg.white & sty.italic | "White italic text on a blue background")
6

7 # store a style for later use
8 success_style = fg.green
9 print(success_style | "Success message")

10 print(success_style & sty.underline | "Underlined success message")
11

12 # build some true colors as well
13 print(rgb(255, 9, 255) | "Purply text")
14 print(hex("#ffdd00") & sty.bold | "Bold yellowy text")

To get started using this package, please see the Getting Started page!

CONTENTS 1



Chalky Documentation, Release 1.0.0

2 CONTENTS



CHAPTER

ONE

GETTING STARTED

Welcome to Chalky!
This page should hopefully provide you with enough information to get you started using Chalky.

1.1 Installation and Setup

Installing the package should be super duper simple as we utilize Python’s setuptools.

$ poetry add chalky
$ # or if you're old school...
$ pip install chalky

Or you can build and install the package from the git repo.

$ git clone https://github.com/stephen-bunn/chalky.git
$ cd ./chalky
$ python setup.py install

1.2 Usage

Now with Chalky installed we can start applying some styles to text. Styles and colors are applied to text through
a single Chalk instance that contains the desired format for styling a string. This instance is reusable and does not
require the user to manually define when reset escape sequences need to be sent.

1.2.1 Creating Chalk

The Chalk class is simply a container storing the basic styles and colors that can be applied to a string. The stored
rules try as best as possible to be agnostic to the interfaces the styles are going to be built with.

Chalk instances can contain:

• A set of Style

• A foreground color (Color or TrueColor)

• A background color (Color or TrueColor)

Constructing instances is pretty straightforward:

3



Chalky Documentation, Release 1.0.0

1 from chalky import Chalk
2 from chalky.style import Style
3 from chalky.color import Color
4

5 my_chalk = Chalk(
6 styles={Style.BOLD, Style.ITALIC},
7 foreground=Color.GREEN,
8 background=Color.WHITE
9 )

1.2.2 Applying Chalk to Strings

Now that you have a Chalk instance to work with, you can apply it to a string using either the | or + operators. Or
you can simply call the chalk instance with the desired string.

print(my_chalk | "Hello, World!")
print(my_chalk + "Hello, World!")
print(my_chalk("Hello, World!"))

When applying the chalk instance to a string, it will build the appropriate ANSI escape sequences to style the string
and automatically add the reset sequence to the end of the string.

1.2.3 Composing Chalk

These Chalk instances can be composed together using the & or + operators.

1 from chalky import Chalk
2 from chalky.style import Style
3 from chalky.color import Color
4

5 my_chalk = Chalk(style={Style.BOLD}) & Chalk(foreground=Color.RED)
6 my_chalk = Chalk(style={Style.BOLD}) + Chalk(foreground=Color.RED)

The styles provided in the instance being applied will override any existing styles on the starting instance.

1 my_chalk = Chalk(foreground=Color.RED) & Chalk(foreground=Color.BLUE)
2 assert my_chalk.foreground == Color.BLUE

1.2.4 Chaining Chalk

Chaining together multiple styles and colors is another typical interface that people like to use for text coloring. We
provide a Chain class that produces a Chalk for quick and easy production:

1 from chalky import chain
2

3 print(chain.green.bold | "I'm bold green text")
4 print(chain.italic.white.bg.blue | "I'm italic white text on blue background")

Using Chain classes should be pretty similar to how you use Chalk instances. You can compose them with other
chains or chalks and apply them to strings just like chalk instances. They ultimately just provide a different interface
for constructing the chalk instance and quickly consuming it.

4 Chapter 1. Getting Started



Chalky Documentation, Release 1.0.0

1.2.5 Chalk Shortcuts

Since it can be pretty darn tedious to create instances of Chalk all the time, I threw in some pre-initialized chalk in
the shortcuts module.

From this module we export fg (foreground), bg (background), and sty (style) namespaces to make it easy and
quick to compose custom chalk instances:

1 from chalky import fg, bg, sty
2

3 debug = sty.dim & fg.white
4 success = fg.green & sty.bold
5 error = fg.red & sty.bold
6 critical = bg.red & fg.white
7

8

9 print(debug | "This is a DEBUG message")
10 print(success | "This is a SUCCESS message")
11 print(error | "This is a ERROR message")
12 print(critical | "This is a CRITICAL message")

You can quickly produce truecolor’s as well (if your terminal supports them) by using the hex() or rgb() functions
to quickly produce TrueColor instances:

1 from chalky import hex, rgb
2

3 custom_rgb = rgb(102, 102, 255) & sty.underline
4 custom_hex = hex("#90ff9c", background=True) & fg.black & sty.bold
5

6 print(custom_rgb | "Potential link text")
7 print(custom_hex | "Black on green text")

1.2. Usage 5



Chalky Documentation, Release 1.0.0

6 Chapter 1. Getting Started



CHAPTER

TWO

CONTRIBUTING

Important: When contributing to this repository, please adhere to our code-of-conduct and first discuss the change
you wish to make via an issue before submitting a pull request.

2.1 Local Development

The following sections will guide you through setting up a local development environment for working on this project
package. At the very least, make sure that you have the necessary pre-commit hooks installed to make sure that all
commits are pristine before they make it into the change history.

2.1.1 Installing Python

Note: If you already have Python 3.7+ installed on your local system, you can skip this step completely.

Installing Python should be done through pyenv. To first install pyenv please follow the guide they provided at
https://github.com/pyenv/pyenv#installation. When you finally have pyenv you should be good to continue on.

$ pyenv --version
pyenv x.x.x

Now that you have pyenv we can install the necessary Python version. This project’s package depends on Python
3.7+, so we can request that through pyenv.

$ pyenv install 3.7 # to install Python 3.7+
...

$ pwd
/PATH/TO/CLONED/REPOSITORY/project-name
$ pyenv local 3.7 # to mark the project directory as needing Python 3.7+
...

$ pyenv global 3.7 # if you wish Python 3.7 to be aliased to `python` everywhere
...

After installing and marking the repository as requiring Python 3.7+ you should be good to continue on installing the
project’s dependencies.

7

https://github.com/pyenv/pyenv
https://github.com/pyenv/pyenv#installation


Chalky Documentation, Release 1.0.0

2.1.2 Virtual Environment

We use Poetry to manage both our dependencies and virtual environments. Setting up poetry just involves installing
it through pip as a user-level dependency.

$ pip install --user poetry
Collecting poetry
Downloading poetry-x.x.x-py2.py3-non-any.whl
...

You can quickly setup your entire development environment by running the installation process from poetry.

$ poetry install
Installing dependencies from lock file
...

This with create a virtual environment for you and install the necesary development dependencies. From there you can
jump into a subshell using the newly created virtual environment using the shell subcommand.

$ poetry shell
pawning shell within ~/.local/share/virtualenvs/my-project-py3.7
...

$ exit # when you wish to exit the subshell

From this shell you have access to all the necessary development dependencies installed in the virutal environment
and can start actually writing and running code within the client package.

2.1.3 Style Enforcement

This project’s preferred styles are fully enforced through pre-commit hooks. In order to take advantage of these hooks
please make sure that you have pre-commit and the configured hooks installed in your local environment.

Installing pre-commit is done through pip and should be installed as a user-level dependency as it adds some
console scripts that all projects using pre-commit will need.

$ pip install --user pre-commit
Collecting pre-commit
Downloading pre_commit-x.x.x-py2.py3-none-any.whl
...

$ pre-commit --version
pre-commit 2.4.0

Once pre-commit is installed you should also install the hooks into the cloned repository.

$ pwd
/PATH/TO/CLONED/REPOSITORY/project-name

$ pre-commit install
pre-commit installed at .git/hooks/pre-commit

After this you should be good to continue on. These installed hooks will do a first-time setup when you attempt your
next commit to build hook environments. Changes that violate the defined style specifications in setup.cfg and
pyproject.toml will cause the commit to fail and will likely make the necessary changes to added / changed files
to be written to the failing files.

8 Chapter 2. Contributing

https://python-poetry.org/
https://pre-commit.com/


Chalky Documentation, Release 1.0.0

This will give you the opportunity to view the changes the hooks made to the failing files and add the new changes to
the commit in order to make the commit pass. It also gives you the opportunity to make tweaks to the autogenerated
changes to make them more human accessible (only if necessary).

2.1.4 Editor Configuration

We also have some specific settings for editor configuration via editorconfig. We recommend you install the appropri-
ate plugin for your editor of choice if your editor doesn’t already natively support .editorconfig configuration
files.

2.1.5 Project Tasking

All of our tasks are built and run through invoke which is basically just a more advanced (a little too advanced) Python
alternative to make. The only reason we are using this utility is because I know how it works and I already had most
of the necessary tasks defined from other projects.

From within the Poetry subshell, you can access and run these commands through the provided invoke development
dependency.

$ invoke --list
Available tasks:

build Build the project.
clean Clean the project.
lint Lint the project.
profile Run and profile a given Python script.
test Test the project.
docs.build Build docs.
docs.build-news Build towncrier newsfragments.
docs.clean Clean built docs.
docs.view Build and view docs.
linter.black Run Black tool check against source.
linter.flake8 Run Flake8 tool against source.
linter.isort Run ISort tool check against source.
linter.mypy Run MyPy tool check against source.
package.build Build package source files.
package.check Check built package is valid.
package.clean Clean previously built package artifacts.
package.coverage Build coverage report for test run.
package.format Auto format package source files.
package.requirements Generate requirements.txt from Poetry's lock.
package.stub Generate typing stubs for the package.
package.test Run package tests.
package.typecheck Run type checking with generated package stubs.

You can run these tasks to do many miscellaneous project tasks such as building documentation.

$ invoke docs.build
[docs.build] ... building 'html' documentation
Running Sphinx v3.0.3
loading pickled environment... done
building [mo]: targets for 0 po files that are out of date
building [html]: targets for 0 source files that are out of date
updating environment: 0 added, 0 changed, 0 removed
looking for now-outdated files... none found

(continues on next page)

2.1. Local Development 9

https://editorconfig.org/#download
http://www.pyinvoke.org/
http://man7.org/linux/man-pages/man1/make.1.html


Chalky Documentation, Release 1.0.0

(continued from previous page)

no targets are out of date.
build succeeded.

The HTML pages are in build/html.

All of these tasks should just work right out of the box, but something might break eventually after required tooling
gets enough major updates.

2.2 Opening Issues

Issues should follow the included ISSUE_TEMPLATE found in .github/ISSUE_TEMPLATE.md.

• Issues should contain the following sections:

– Expected Behavior

– Current Behavior

– Possible Solution

– Steps to Reproduce (for bugs)

– Context

– Your Environment

These sections help the developers greatly by providing a large understanding of the context of the bug or requested
feature without having to launch a full fledged discussion inside of the issue.

2.3 Creating Pull Requests

Pull requests should follow the included PULL_REQUEST_TEMPLATE found in .github/
PULL_REQUEST_TEMPLATE.md.

• Pull requests should always be from a topic / feature / bugfix (left side) branch.
Pull requests from master branches will not be merged.

• Pull requests should not fail our requested style guidelines or linting checks.

10 Chapter 2. Contributing



CHAPTER

THREE

CHANGELOG

All notable changes to this project will be documented in this file.
The format is based on Keep a Changelog and this project adheres to Semantic Versioning.

3.1 1.0.0 (2021-01-19)

No significant changes.

3.2 0.5.0 (2021-01-07 )

3.2.1 Features

• Automatically casting values applied to Chalk to strings. This will fix issues where the user wants to easily
use an instance of some class in a templated string without having to cast it to a string themselves.

1 from chalky import fg
2

3 class MyObject:
4

5 def __str__(self) -> str:
6 return f"{self.__class__.__qualname__!s}()"
7

8 print(fg.green | MyObject())

3.3 0.4.0 (2020-12-28)

3.3.1 Features

• Consuming the current chain’s styles and colors if chalk() is consumed. This helps with constructing reusable
styles with the chaining syntax:

1 from chalky import chain
2

3 # previously not possible
4 error = chain.bold.white.bg.red

(continues on next page)

11

http://keepachangelog.com/en/1.0.0/
http://semver.org/spec/v2.0.0.html


Chalky Documentation, Release 1.0.0

(continued from previous page)

5 success = chain.bold.bright_green
6

7 # now possible
8 error = chain.bold.white.bg.red.chalk
9 success = chain.bold.bright_green.chalk

3.4 0.3.0 (2020-12-25)

3.4.1 Features

• Including a global configure() callable to handle configuring the entire module. At the moment, the only
feature we are adding is the ability to completely disable the actual application of styles and colors through the
disable flag.

3.4.2 Documentation

• Adding some simple chalky chaining documentation.

3.5 0.2.0 (2020-12-24)

3.5.1 Features

• Adding an interface for producing styles and colors using chained properties.
Usage looks like this:

1 from chalky import chain
2 print(chain.bold.blue | "I'm blue bold text!")

3.5.2 Documentation

• Adding some chaining documentation.

• Adding basic usage documentation for the initial release.

3.5.3 Miscellaneous

• Adding a basic Chalky logo to make the documentation a bit more friendly.

12 Chapter 3. Changelog



Chalky Documentation, Release 1.0.0

3.6 0.1.0 (2020-12-23)

3.6.1 Miscellaneous

• Adding the contents of an initial alpha release.

3.6. 0.1.0 (2020-12-23) 13



Chalky Documentation, Release 1.0.0

14 Chapter 3. Changelog



CHAPTER

FOUR

LICENSE

ISC License

Copyright (c) 2020, Stephen Bunn <stephen@bunn.io>

Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies.

THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

15



Chalky Documentation, Release 1.0.0

16 Chapter 4. License



CHAPTER

FIVE

PROJECT REFERENCE

5.1 Chalky Package

Simple ANSI terminal text coloring.

Compose multiple of the included chalk instances to produce a style that can be applied directly to strings. Compose
multiple chalk instances together with & and apply it to a string using |:

1 from chalky import sty, fg
2 print(sty.bold & fg.green | "Hello, World!")

5.1.1 Chalk

Contains the base chalk class that is used to group some style and colors.

class chalky.chalk.Chalk(style=<factory>, foreground=None, background=None)
Describes the style and color to use for styling some printable text.

Chalk can be composed using & and can be applied to strings with |. You can create your own instance of chalk
by setting your desired Style and Color when creating a new instance.

Examples

Creating custom instances of chalk looks like the following:

>>> my_chalk = Chalk(
... style={Style.BOLD, Style.UNDERLINE},
... foreground=Color.RED,
... )

Composing two chalk instances can be done through either using & or +:

>>> bold_chalk = Chalk(style={Style.BOLD})
>>> error_chalk = bold_chalk & Chalk(foreground=Color.RED)

Using chalk instances to style strings can be done using either | or +:

>>> error_chalk | "Hello, World!"
Hello, World!

17



Chalky Documentation, Release 1.0.0

Important: When composing two chalk instances together, the chalk being applied to the base chalk instance
will override the foreground and background colors. This means that if you apply a new chalk with a different
foreground color it will override the starting foreground color:

>>> red = Chalk(foreground=Color.RED)
>>> blue = Chalk(foreground=Color.BLUE)
>>> assert blue == (red & blue)

Parameters

• style (Set[Style]) –

• foreground (Union[Color, TrueColor, None]) –

• background (Union[Color, TrueColor, None]) –

__add__(other: chalky.chalk.Chalk)→ chalky.chalk.Chalk
__add__(other: str)→ str

Handle applying chalk instances to things.

Parameters other (Union[Chalk, str]) – Either another chalk instance or a string.

Returns The combined chalk instances or a styled string.

Return type Union[Chalk, str]

__and__(other)
Create a new chalk instance from the composition of two chalk.

Parameters other (Chalk) – Another chalk to combine with the current chalk.

Returns The newly created chalk instance.

Return type Chalk

__call__(value)
Handle applying chalk instances to strings.

Parameters value (str) – The string to apply the current styles to.

Returns The newly styled string.

Return type str

__or__(value)
Style some given string with the current chalk instance.

Tip: If a non-string value is provided, we will attempt to get the most appropriate string from the value
by simply calling str(value). So if you are passing in an object, make sure to use an appropriate
__str__ or __repr__.

Parameters value (Any) – The value to apply the current chalk styles to.

Returns The newly styled string.

Return type str

property reverse
Color reverse of the current chalk instance.

18 Chapter 5. Project Reference

https://docs.python.org/3.7/library/typing.html#typing.Set
https://docs.python.org/3.7/library/typing.html#typing.Union
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/typing.html#typing.Union
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str


Chalky Documentation, Release 1.0.0

Returns The revsered chalk instance

Return type Chalk

5.1.2 Style

Contains the available styles we can use for chalk.

class chalky.style.Style(value)
Enum of the available styles that can be applied to some printable text.

RESET
Resets all styles and colors to the original terminal style.

BOLD
Emphasizes the text by increasing the font weight.

DIM
Dims the text color and sometimes decreases font weight.

ITALIC
Italicize the text.

UNDERLINE
Underlines the text (works in most modern terminals).

SLOW_BLINK
Flash the text slowly (doesn’t work in most modern terminals).

RAPID_BLINK
Flash the text very quickly (doesn’t work in most modern terminals).

REVERSED
Reversed the current style of the terminal for the text.

CONCEAL
Hide the text.

STRIKETHROUGH
Draw a line through the text (works in most modern terminals).

NORMAL
Normalizes the text for the current terminal.

5.1.3 Color

Contains the available tools to define the colors that can be used for chalk.

class chalky.color.Color(value)
Enum of the available colors that can be used to color some printable text.

BLACK

RED

GREEN

YELLOW

BLUE

MAGENTA

5.1. Chalky Package 19



Chalky Documentation, Release 1.0.0

CYAN

WHITE

BRIGHT_BLACK
Otherwise known as gray.

BRIGHT_RED

BRIGHT_GREEN

BRIGHT_YELLOW

BRIGHT_BLUE

BRIGHT_MAGENTA

BRIGHT_CYAN

BRIGHT_WHITE
Otherwise known as actual white.

class chalky.color.TrueColor(red, green, blue)
Describes a true color that can be displayed on compatible terminals.

Parameters

• red (int) – The value of red (0-255).

• green (int) – The value of green (0-255).

• blue (int) – The value of blue (0-255).

__hash__()
Generate a comparable hash for the current instance.

Returns The appropriate hash of the current instance.

Return type int

classmethod from_hex(color)
Create an instance from a given hex color string.

Parameters color (str) – The hex color string of the color to create.

Raises ValueError – If the given hex color string is not a length of 3 or 6

Returns The created instance.

Return type TrueColor

to_bytes()
Convert the current color to a tuple of RGB bytes.

Returns The corresponding bytes of the current instance (red, green, blue).

Return type Tuple[bytes, bytes, bytes]

20 Chapter 5. Project Reference

https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/exceptions.html#ValueError
https://docs.python.org/3.7/library/stdtypes.html#bytes
https://docs.python.org/3.7/library/stdtypes.html#bytes
https://docs.python.org/3.7/library/stdtypes.html#bytes


Chalky Documentation, Release 1.0.0

5.1.4 Chain

Contains the chain class that can be used to quickly produce styles and colors.

class chalky.chain.Chain(_chalk=<factory>, _background=False)
Quickly produce a chain of styles and colors that can be applied to a string.

Parameters chalk (Chalk) – The container chalk instance that contains the current chain style.

Examples

Chaining styles together should be fairly straightforward:

>>> from chalk import chain
>>> print(chain.bold.blue | "Bold blue text")
>>> print(chain.black.bg.green.italic | "Italic black text on green background")

Once a Chain instance is applied to a string, the styles are consumed and the chain instance is reset.

Parameters

• _chalk (Chalk) –

• _background (bool) –

__add__(other: Union[chalky.chalk.Chalk, chalky.chain.Chain])→ chalky.chain.Chain
__add__(other: str)→ str

Handle applying chain instances to things.

Parameters other (Union[Chalk, Chain, str]) – Either a chalk instance, a chain in-
stance, or a string.

Returns The updated chain or the applied string.

Return type Union[Chain, str]

__and__(other)
Compose the chain with another chain or a chalk instance.

Parameters other (Union[Chalk, Chain]) – Another Chain or Chalk instance to
compose with the current chain.

Returns The newly updated chain.

Return type Chain

__call__(value)
Handle applying a chain to a strings.

Parameters value (str) – The string to apply the current chain to.

Returns The newly styled string.

Return type str

__or__(value)
Style some given string with the current chain.

Parameters value (str) – THe string to apply the current chain to.

Returns The newly styled string.

Return type str

5.1. Chalky Package 21

https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str


Chalky Documentation, Release 1.0.0

property bg
Following colors will be applied as the background color.

Return type Chain

property chalk
Extract the currently built chalk instance.

Important: Consuming this property will reset the current chain’s styles. We are assuming that if you
need the Chalk, you have finished constructing it through the chaining syntax.

Returns The current chalk instance from the chained styles and colors.

Return type Chalk

property fg
Following colors will be applied as the foreground color.

Return type Chain

hex(color)
Add a truecolor chalk from a hex string.

Parameters color (str) – The hex color string (#ffffff)

Returns The newly updated chain.

Return type Chain

rgb(red, green, blue)
Add a truecolor chalk from an RGB tuple.

Parameters

• red (int) – The intensity of red (0-255).

• green (int) – The intensity of green (0-255).

• blue (int) – The intensity of blue (0-255).

Returns The newly updated chain.

Return type Chain

5.1.5 Shortcuts

Contains shortcuts for quickly utilizing chalk.

Simply combine colors and styles using & or + to produce a style that can used to format a string with | or +.

22 Chapter 5. Project Reference

https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/functions.html#int


Chalky Documentation, Release 1.0.0

Examples

>>> from chalky import bg, fg, sty
>>> my_style = bg.red & fg.black & sty.bold
>>> print(my_style | "I'm bold black on red text")
I'm bold black on red text

Many chalk styles can be combined together:

Examples

>>> from chalky import sty
>>> my_style = sty.bold & sty.underline
>>> print(my_style | "I'm bold and underlined")
I'm bold and underlined

The last applied foreground or background color will be used when applied to a string:

Examples

>>> from chalky import bg
>>> my_style = bg.red & bg.blue # BLUE will override RED when styling the string
>>> print(my_style | "My background is BLUE")
My background is BLUE

chalky.shortcuts.hex(hexcolor, background=False)
Generate a new truecolor chalk from a HEX color (#ffffff) string.

Parameters

• hexcolor (str) – The hex color string.

• background (bool, optional) – If True will generate the new chalk to be applied
as background color. Defaults to False.

Returns The new chalk instance.

Return type Chalk

chalky.shortcuts.rgb(red, green, blue, background=False)
Generate a new truecolor chalk from an RGB tuple.

Parameters

• red (int) – The intensity of red (0-255).

• green (int) – The intensity of green (0-255).

• blue (int) – The intensity of blue (0-255).

• background (bool, optional) – If True will generate the new chalk to be applied
as a background color. Defaults to False.

Returns The new chalk instance.

Return type Chalk

5.1. Chalky Package 23

https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/functions.html#bool


Chalky Documentation, Release 1.0.0

5.1.6 Interface

Contains the actual implementation of interacting with a type of terminal buffer.

chalky.interface.get_interface(io=None)
Get the appropriate interface to interact with some terminal buffer.

Examples

Get the default interface for interacting with the terminal buffer. This defaults to using sys.stdout

>>> from chalky.interface import get_interface
>>> interface = get_interface()

To get an interface using a different text io buffer, pass it in:

>>> import sys
>>> stderr_interface = get_interface(sys.stderr)

Parameters io (Optional[TextIO], optional) – The io to build an interface for. Defaults to sys.
stdout.

Returns The created interface for the given io buffer.

Return type BaseInterface

5.1.7 Constants

Contains package constants that modify the global functions of the package.

Utilize the configure() method to quickly and easily disable all future application of Chalk to strings.

>>> from chalky import configure, fg
>>> configure(disable=True)
>>> print(fg.green | "I'm NOT green text")

chalky.constants.configure(disable=False)
Configure the global state of the chalky module.

Parameters disable (bool, optional) – If True, will disable all future application of colors
and styles. Defaults to False.

chalky.constants.is_disabled()
Callable to evaluate the disabled conditional.

Returns True if chalky is disabled, otherwise False.

Return type bool

24 Chapter 5. Project Reference

https://docs.python.org/3.7/library/sys.html#sys.stdout
https://docs.python.org/3.7/library/typing.html#typing.TextIO
https://docs.python.org/3.7/library/sys.html#sys.stdout
https://docs.python.org/3.7/library/sys.html#sys.stdout
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/functions.html#bool


Chalky Documentation, Release 1.0.0

5.1.8 Helpers

Contains some miscellaneous helpers for the rest of the package.

chalky.helpers.int_to_bytes(value)
Convert a given number to its representation in bytes.

Parameters value (int) – The value to convert.

Returns The representation of the given number in bytes.

Return type bytes

chalky.helpers.supports_posix()
Check if the current machine supports basic posix.

Returns True if the current machine is MacOSX or Linux.

Return type bool

chalky.helpers.supports_truecolor()
Attempt to check if the current terminal supports truecolor.

Returns True if the current terminal supports truecolor, otherwise False.

Return type bool

5.1. Chalky Package 25

https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/stdtypes.html#bytes
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/functions.html#bool


Chalky Documentation, Release 1.0.0

26 Chapter 5. Project Reference



PYTHON MODULE INDEX

c
chalky, 17
chalky.chain, 21
chalky.chalk, 17
chalky.color, 19
chalky.constants, 24
chalky.helpers, 25
chalky.interface, 24
chalky.shortcuts, 22
chalky.style, 19

27



Chalky Documentation, Release 1.0.0

28 Python Module Index



INDEX

Symbols
__add__() (chalky.chain.Chain method), 21
__add__() (chalky.chalk.Chalk method), 18
__and__() (chalky.chain.Chain method), 21
__and__() (chalky.chalk.Chalk method), 18
__call__() (chalky.chain.Chain method), 21
__call__() (chalky.chalk.Chalk method), 18
__hash__() (chalky.color.TrueColor method), 20
__or__() (chalky.chain.Chain method), 21
__or__() (chalky.chalk.Chalk method), 18

B
bg() (chalky.chain.Chain property), 21
BLACK (chalky.color.Color attribute), 19
BLUE (chalky.color.Color attribute), 19
BOLD (chalky.style.Style attribute), 19
BRIGHT_BLACK (chalky.color.Color attribute), 20
BRIGHT_BLUE (chalky.color.Color attribute), 20
BRIGHT_CYAN (chalky.color.Color attribute), 20
BRIGHT_GREEN (chalky.color.Color attribute), 20
BRIGHT_MAGENTA (chalky.color.Color attribute), 20
BRIGHT_RED (chalky.color.Color attribute), 20
BRIGHT_WHITE (chalky.color.Color attribute), 20
BRIGHT_YELLOW (chalky.color.Color attribute), 20

C
Chain (class in chalky.chain), 21
Chalk (class in chalky.chalk), 17
chalk() (chalky.chain.Chain property), 22
chalky

module, 17
chalky.chain

module, 21
chalky.chalk

module, 17
chalky.color

module, 19
chalky.constants

module, 24
chalky.helpers

module, 25
chalky.interface

module, 24
chalky.shortcuts

module, 22
chalky.style

module, 19
Color (class in chalky.color), 19
CONCEAL (chalky.style.Style attribute), 19
configure() (in module chalky.constants), 24
CYAN (chalky.color.Color attribute), 19

D
DIM (chalky.style.Style attribute), 19

F
fg() (chalky.chain.Chain property), 22
from_hex() (chalky.color.TrueColor class method), 20

G
get_interface() (in module chalky.interface), 24
GREEN (chalky.color.Color attribute), 19

H
hex() (chalky.chain.Chain method), 22
hex() (in module chalky.shortcuts), 23

I
int_to_bytes() (in module chalky.helpers), 25
is_disabled() (in module chalky.constants), 24
ITALIC (chalky.style.Style attribute), 19

M
MAGENTA (chalky.color.Color attribute), 19
module

chalky, 17
chalky.chain, 21
chalky.chalk, 17
chalky.color, 19
chalky.constants, 24
chalky.helpers, 25
chalky.interface, 24
chalky.shortcuts, 22

29



Chalky Documentation, Release 1.0.0

chalky.style, 19

N
NORMAL (chalky.style.Style attribute), 19

R
RAPID_BLINK (chalky.style.Style attribute), 19
RED (chalky.color.Color attribute), 19
RESET (chalky.style.Style attribute), 19
reverse() (chalky.chalk.Chalk property), 18
REVERSED (chalky.style.Style attribute), 19
rgb() (chalky.chain.Chain method), 22
rgb() (in module chalky.shortcuts), 23

S
SLOW_BLINK (chalky.style.Style attribute), 19
STRIKETHROUGH (chalky.style.Style attribute), 19
Style (class in chalky.style), 19
supports_posix() (in module chalky.helpers), 25
supports_truecolor() (in module chalky.helpers),

25

T
to_bytes() (chalky.color.TrueColor method), 20
TrueColor (class in chalky.color), 20

U
UNDERLINE (chalky.style.Style attribute), 19

W
WHITE (chalky.color.Color attribute), 20

Y
YELLOW (chalky.color.Color attribute), 19

30 Index


	Getting Started
	Contributing
	Changelog
	License
	Project Reference
	Python Module Index
	Index

